Analytic Functors

Jiří Adámek
Technical University of Braunschweig

The finitary analytic functors introduced by Andre Joyal are defined as those endofunctors of \textbf{Set} which are left Kan extensions of functors from \mathbf{B}, the category of all finite sets and isomorphisms, into \textbf{Set}. They can be characterized as precisely the finitary set functors weakly preserving countable wide pullbacks. And they are described as all coproducts of finitary pseudo-representables. Here we call, for every object A of a category \mathbf{K}, the quotient of the hom-functor of A modulo a group on automorphisms of A a pseudorepresentable.

We generalize analytic functors to include functors between locally presentable categories \mathbf{K} and \mathbf{L}: Let \mathbf{B}_λ be the category of all λ-presentable objects of \mathbf{K} and all isomorphisms. The λ-ary analytic functors from \mathbf{K} to \textbf{Set} are precisely the left Kan extensions of functors from \mathbf{B}_λ to \textbf{Set}. They are characterized as precisely the λ-accessible functors weakly preserving wide pullbacks. And they can be described as the coproducts of pseudo-representables. Finally, a functor from \mathbf{K} to \mathbf{L} is called analytic iff its composite with every hom-functor of \mathbf{L} is analytic. These are precisely the accessible functors weakly preserving wide pullbacks.

Example: analytic endofunctors of the category of graphs are precisely the liftings of analytic endofunctors of $\textbf{Set} \times \textbf{Set}$ via the canonical forgetful functor.

We present a comparison to other generalizations of analytic functors due to M. Fiore [1] and M. Abbott et al. [2].

References:

[1] M. Fiore: Exact characterisation of generalized analytic functors between groupoids, a preprint
