Numerical Methods for Hamiltonian Systems: Chaos Detection

Haris Skokos

Department of Mathematics and Applied Mathematics
University of Cape Town, Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za
URL: http://www.mth.uct.ac.za/~hskokos/

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
Outline

• Hamiltonian systems – Symplectic maps
 ✓ Variational equations
 ✓ Poincaré Surface of Section
 ✓ Lyapunov exponents

• Smaller ALignment Index – SALI
 ✓ Definition
 ✓ Behavior for chaotic and regular motion
 ✓ Applications

• Generalized ALignment Index – GALI
 ✓ Definition - Relation to SALI
 ✓ Behavior for chaotic and regular motion
 ✓ Applications
 ✓ Global dynamics
 ✓ Motion on low-dimensional tori

• Efficient integration of variational equations
 ✓ Symplectic integrators
 ✓ The tangent map (TM) method

• Conclusions
Autonomous Hamiltonian systems

Consider an \(N \) degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form:

\[
H(q_1, q_2, \ldots, q_N, p_1, p_2, \ldots, p_N)
\]

The time evolution of an orbit (trajectory) with initial condition

\[
P(0) = (q_1(0), q_2(0), \ldots, q_N(0), p_1(0), p_2(0), \ldots, p_N(0))
\]

is governed by the Hamilton’s equations of motion

\[
\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}, \quad \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}
\]
Variational Equations

We use the notation $x = (q_1, q_2, \ldots, q_N, p_1, p_2, \ldots, p_N)^T$. The deviation vector from a given orbit is denoted by

$$v = (\delta x_1, \delta x_2, \ldots, \delta x_n)^T$$

with $n=2N$.

The time evolution of v is given by the so-called *variational equations*:

$$\frac{dv}{dt} = -J \cdot P \cdot v$$

where

$$J = \begin{pmatrix} 0_N & -I_N \\ I_N & 0_N \end{pmatrix}, \quad P_{ij} = \frac{\partial^2 H}{\partial x_i \partial x_j} \quad i, j = 1, 2, \ldots, n$$

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93
Example (Hénon-Heiles system)

\[H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2y - \frac{1}{3}y^3 \]

Hamilton’s equations of motion:

\[
\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}, \quad \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} \quad \Rightarrow \quad \begin{cases}
\dot{x} = p_x \\
\dot{y} = p_y \\
\dot{p}_x = -x - 2xy \\
\dot{p}_y = -y - x^2 + y^2
\end{cases}
\]

In order to get the variational equations we linearize the above equations by substituting \(x, y, px, py \) with \(x+v_1, y+v_2, p_x+v_3, p_y+v_4 \) where \(v=(v_1,v_2,v_3,v_4) \) is the deviation vector. So we get:

\[
\begin{align*}
\dot{p}_x + \dot{v}_3 &= -x - v_1 - 2(x + v_1)(y + v_2) \\
\dot{p}_y + \dot{v}_3 &= -x - v_1 - 2xy - 2xv_2 - 2yv_1 - 2v_1v_2 \\
\dot{v}_3 &= -v_1 - 2yv_1 - 2xv_2
\end{align*}
\]
Example (Hénon-Heiles system)

Variational equations:

\[
\frac{dv}{dt} = -J \cdot P \cdot v
\]

\[
\begin{pmatrix}
\dot{v}_1 \\
\dot{v}_2 \\
\dot{v}_3 \\
\dot{v}_4
\end{pmatrix} = -
\begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1+2y & 2x & 0 & 0 \\
2x & 1-2y & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{pmatrix}
\]

\[
\begin{aligned}
\dot{v}_1 &= v_3 \\
\dot{v}_2 &= v_4 \\
\dot{v}_3 &= -v_1 - 2xv_2 - 2yv_1 \\
\dot{v}_4 &= -v_2 - 2xv_1 + 2yv_2
\end{aligned}
\]

\[
\begin{aligned}
\dot{x} &= p_x \\
\dot{y} &= p_y \\
\dot{p}_x &= -x - 2xy \\
\dot{p}_y &= -y - x^2 + y^2
\end{aligned}
\]

Complete set of equations
We can constrain the study of an $N+1$ degree of freedom Hamiltonian system to a $2N$-dimensional subspace of the general phase space.

In general we can assume a PSS of the form $q_{N+1} = \text{constant}$. Then only variables $q_1, q_2, \ldots, q_N, p_1, p_2, \ldots, p_N$ are needed to describe the evolution of an orbit on the PSS, since p_{N+1} can be found from the Hamiltonian.

In this sense an $N+1$ degree of freedom Hamiltonian system corresponds to a $2N$-dimensional symplectic map.

Hénon-Heiles system: PSS

- Chaotic motion
- Chaotic sea
- Regular motion
- Island of stability
Symplectic Maps

Consider an $2N$-dimensional symplectic map T. In this case we have discrete time.

This is an area-preserving map whose Jacobian matrix

$$M = \frac{\partial T}{\partial x} = \begin{bmatrix}
\frac{\partial T_1}{\partial x_1} & \frac{\partial T_1}{\partial x_2} & \cdots & \frac{\partial T_1}{\partial x_{2N}} \\
\frac{\partial T_2}{\partial x_1} & \frac{\partial T_2}{\partial x_2} & \cdots & \frac{\partial T_2}{\partial x_{2N}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial T_{2N}}{\partial x_1} & \frac{\partial T_{2N}}{\partial x_2} & \cdots & \frac{\partial T_{2N}}{\partial x_{2N}}
\end{bmatrix}$$

satisfies

$$M^T \cdot J_{2N} \cdot M = J_{2N}$$
Symplectic Maps

The evolution of an orbit with initial condition
\[P(0) = (x_1(0), x_2(0), \ldots, x_{2N}(0)) \]
is governed by the equations of map \(T \)
\[P(i+1) = T \, P(i) \quad i=0,1,2,\ldots \]

The evolution of an initial deviation vector
\[v(0) = (\delta x_1(0), \delta x_2(0), \ldots, \delta x_{2N}(0)) \]
is given by the corresponding tangent map
\[v(i+1) = \left. \frac{\partial T}{\partial P} \right|_i \cdot v(i) \quad i = 0,1,2,\ldots \]
Example – 2D map

Equations of the map:

\[
\begin{bmatrix}
 x'_1 \\
 x'_2
\end{bmatrix}
= T
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\Rightarrow
\begin{align*}
 x'_1 &= x_1 + x_2 \\
 x'_2 &= x_2 - \nu \sin(x_1 + x_2)
\end{align*}
\quad (\text{mod } 2\pi)
\]

Tangent map:

\[
v(i + 1) = \left. \frac{\partial T}{\partial P} \right|_i \cdot v(i)
\]

\[
\begin{bmatrix}
 dx'_1 \\
 dx'_2
\end{bmatrix}
= \begin{bmatrix}
 1 & 1 \\
 -\nu \cos(x_1 + x_2) & 1 - \nu \cos(x_1 + x_2)
\end{bmatrix}
\begin{bmatrix}
 dx_1 \\
 dx_2
\end{bmatrix}
\]
Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition \(x(0)\) and an initial deviation vector from it \(v(0)\). Then the mean exponential rate of divergence is:

\[
\sigma(x(0), v(0)) = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|v(t)\|}{\|v(0)\|}
\]
Lyapunov Exponents

There exists an M-dimensional basis \(\{\hat{e}_i\} \) of \(v \) such that for any \(v \), \(\sigma \) takes one of the \(M \) (possibly nondistinct) values
\[
\sigma_i(x(0)) = \sigma(x(0), \hat{e}_i)
\]
which are the Lyapunov exponents.

In autonomous Hamiltonian systems the M exponents are ordered in pairs of opposite sign numbers and two of them are 0.

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93
Computation of the Maximal Lyapunov Exponent

Due to the exponential growth of $v(t)$ (and of $d(t)=||v(t)||$) we renormalize $v(t)$ from time to time.

Then the Maximal Lyapunov exponent is computed as

$$\sigma_1 = \lim_{n \to \infty} \frac{1}{n \tau} \sum_{i=1}^{n} \ln d_i$$

Figure 5.6. Numerical calculation of the maximal Liapunov characteristic exponent. Here $y = x + v$ and τ is a finite interval of time (after Benettin et al., 1976).
Maximum Lyapunov Exponent

If we start with more than one linearly independent deviation vectors they will align to the direction defined by the largest Lyapunov exponent for chaotic orbits.

\[\sigma_1 = 0 \rightarrow \text{Regular motion} \]
\[\sigma_1 \neq 0 \rightarrow \text{Chaotic motion} \]

Figure 5.7. Behavior of \(\sigma_n \) at the intermediate energy \(E = 0.125 \) for initial points taken in the ordered (curves 1–3) or stochastic (curves 4–6) regions (after Benettin et al., 1976).
The Smaller ALignment Index (SALI) method
Definition of Smaller Alignment Index (SALI)

Consider the $2N$-dimensional phase space of a conservative dynamical system (symplectic map or Hamiltonian flow).

An orbit in that space with initial condition:

$$P(0) = (x_1(0), x_2(0), \ldots, x_{2N}(0))$$

and a deviation vector

$$v(0) = (\delta x_1(0), \delta x_2(0), \ldots, \delta x_{2N}(0))$$

The evolution in time (in maps the time is discrete and is equal to the number n of the iterations) of a deviation vector is defined by:

- the variational equations (for Hamiltonian flows) and
- the equations of the tangent map (for mappings)
Definition of SALI

We follow the evolution in time of two different initial deviation vectors \((v_1(0), v_2(0))\), and define SALI (Ch.S. 2001, J. Phys. A) as:

\[
\text{SALI}(t) = \min \left\{ \| \hat{v}_1(t) + \hat{v}_2(t) \|, \| \hat{v}_1(t) - \hat{v}_2(t) \| \right\}
\]

where

\[
\hat{v}_1(t) = \frac{v_1(t)}{\|v_1(t)\|}
\]

When the two vectors become collinear

\[
\text{SALI}(t) \rightarrow 0
\]
Behavior of SALI for chaotic motion

For chaotic orbits the two initially different deviation vectors tend to coincide with the direction defined by the maximum Lyapunov exponent.

\[\hat{v}_1(0), \hat{v}_2(0) \]
\[\hat{v}_1(t), \hat{v}_2(t) \]

\[P(0), P(t) \]
\[\text{Trajectory} \]
Behavior of SALI for chaotic motion

The evolution of a deviation vector can be approximated by:

\[v_1(t) = \sum_{i=1}^{n} c_i^{(1)} e^{\sigma_i t} \hat{u}_i \approx c_1^{(1)} e^{\sigma_1 t} \hat{u}_1 + c_2^{(1)} e^{\sigma_2 t} \hat{u}_2 \]

where \(\sigma_1 > \sigma_2 \geq \ldots \geq \sigma_n \) are the Lyapunov exponents and \(\hat{u}_j \) \(j=1, 2, \ldots, 2N \) the corresponding eigendirections.

In this approximation, we derive a leading order estimate of the ratio

\[\frac{v_1(t)}{\|v_1(t)\|} \approx \frac{c_1^{(1)} e^{\sigma_1 t} \hat{u}_1 + c_2^{(1)} e^{\sigma_2 t} \hat{u}_2}{\|c_1^{(1)} e^{\sigma_1 t}\|} = \pm \hat{u}_1 + \frac{c_2^{(1)}}{|c_1^{(1)}|} e^{-(\sigma_1-\sigma_2)t} \hat{u}_2 \]

and an analogous expression for \(v_2 \)

\[\frac{v_2(t)}{\|v_2(t)\|} \approx \frac{c_1^{(2)} e^{\sigma_1 t} \hat{u}_1 + c_2^{(2)} e^{\sigma_2 t} \hat{u}_2}{\|c_1^{(2)} e^{\sigma_1 t}\|} = \pm \hat{u}_1 + \frac{c_2^{(2)}}{|c_1^{(2)}|} e^{-(\sigma_1-\sigma_2)t} \hat{u}_2 \]

So we get:

\[\text{SALI}(t) = \min \left\{ \frac{v_1(t)}{\|v_1(t)\|}, \frac{v_2(t)}{\|v_2(t)\|}, \frac{v_1(t)}{\|v_1(t)\|} - \frac{v_2(t)}{\|v_2(t)\|} \right\} \approx \frac{c_2^{(1)}}{|c_1^{(1)}|} + \frac{c_2^{(2)}}{|c_1^{(2)}|} e^{-(\sigma_1-\sigma_2)t} \]
Behavior of SALI for chaotic motion

We test the validity of the approximation \(\text{SALI} \approx e^{-(\sigma_1-\sigma_2)t} \) (Ch.S., Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit of the 3D Hamiltonian

\[
H = \sum_{i=1}^{3} \frac{\omega_i}{2} (q_i^2 + p_i^2) + q_1^2 q_2 + q_1^2 q_3
\]

with \(\omega_1=1, \omega_2=1.4142, \omega_3=1.7321, H=0.09 \)

\[\sigma_1 \approx 0.037 \quad \sigma_2 \approx 0.011\]

slope \(=-(\sigma_1-\sigma_2)/\ln(10)\)
Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial deviation vectors become tangent to the torus, generally having different directions.
Applications – Hénon-Heiles system

As an example, we consider the 2D Hénon-Heiles system:

\[H_2 = \frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y - \frac{1}{3} y^3 \]

For \(E=1/8 \) we consider the orbits with initial conditions:

Regular orbit, \(x=0, y=0.55, p_x=0.2417, p_y=0 \)

Chaotic orbit, \(x=0, y=-0.016, p_x=0.49974, p_y=0 \)

Chaotic orbit, \(x=0, y=-0.01344, p_x=0.49982, p_y=0 \)
Applications – Hénon-Heiles system

\[\log(SALI) \]

\[t=1000 \]

\[t=4000 \]
Applications – Hénon-Heiles system

$log(SALI) \leq -12$
-12 < $log(SALI) \leq -8$
-8 < $log(SALI) \leq -4$
-4 < $log(SALI)$
Applications – Hénon-Heiles system

The percentage of non chaotic orbits \((\text{SALI} > 10^{-8} \text{ for } t=1000)\)

Hénon-Heiles (1964) Astron. J. 69, 73.

Applications – 4D map

\[
\begin{align*}
x_1' &= x_1 + x_2 \\
x_2' &= x_2 - \nu \sin(x_1 + x_2) - \mu \left[1 - \cos(x_1 + x_2 + x_3 + x_4)\right] \pmod{2\pi} \\
x_3' &= x_3 + x_4 \\
x_4' &= x_4 - \kappa \sin(x_3 + x_4) - \mu \left[1 - \cos(x_1 + x_2 + x_3 + x_4)\right]
\end{align*}
\]

For \(\nu=0.5\), \(\kappa=0.1\), \(\mu=0.1\) we consider the orbits:
- **regular orbit C** with initial conditions \(x_1=0.5\), \(x_2=0\), \(x_3=0.5\), \(x_4=0\).
- **chaotic orbit D** with initial conditions \(x_1=3\), \(x_2=0\), \(x_3=0.5\), \(x_4=0\).
Applications – 4D Accelerator map

We consider the 4D symplectic map

\[
\begin{pmatrix}
x_1' \\
x_2' \\
x_3' \\
x_4'
\end{pmatrix} =
\begin{pmatrix}
\cos \omega_1 & -\sin \omega_1 & 0 & 0 \\
\sin \omega_1 & \cos \omega_1 & 0 & 0 \\
0 & 0 & \cos \omega_2 & -\sin \omega_2 \\
0 & 0 & \sin \omega_2 & \cos \omega_2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 + x_1^2 - x_3^2 \\
x_3 \\
x_4 - 2x_1x_3
\end{pmatrix}
\]

\(x_1\) and \(x_3\) are the particle’s deflections from the ideal circular orbit, in the horizontal and vertical directions respectively.

\(x_2\) and \(x_4\) are the associated momenta

\(\omega_1, \omega_2\) are related to the accelerator’s tunes \(q_x, q_y\) by \(\omega_1 = 2\pi q_x, \quad \omega_2 = 2\pi q_y\)

4D Accelerator map – "Global" study

Regions of **different values of the SALI** on the subspace $x_2(0)=x_4(0)=0$, after 10^5 iterations ($q_x=0.61803$ $q_y=0.4152$)
4D Accelerator map – "Global" study

Increase of the dynamic aperture

We evolve many orbits in 4D hyperspheres of radius r centered at $x_1 = x_2 = x_3 = x_4 = 0$, for 10^5 iterations.
Applications – 2D map

\[x'_1 = x_1 + x_2 \] \hspace{1cm} \text{(mod } 2\pi) \]
\[x'_2 = x_2 - \nu \sin(x_1 + x_2) \]

For \(\nu = 0.5 \) we consider the orbits:
- \textit{regular orbit A} with initial conditions \(x_1 = 2, x_2 = 0 \).
- \textit{chaotic orbit B} with initial conditions \(x_1 = 3, x_2 = 0 \).
Behavior of SALI

2D maps

SALI→0 both for regular and chaotic orbits
following, however, completely different time rates which allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps

SALI→0 for chaotic orbits

SALI→constant ≠ 0 for regular orbits
Questions

Can we generalize SALI so that the new index:

- Can rapidly reveal the nature of chaotic orbits with $\sigma_1 \approx \sigma_2$ ($\text{SALI} \propto e^{-(\sigma_1 - \sigma_2)t}$)?

- Depends on several Lyapunov exponents for chaotic orbits?

- Exhibits power-law decay for regular orbits depending on the dimensionality of the tangent space of the reference orbit as for 2D maps?
The Generalized ALignment Indices (GALIs) method
Definition of Generalized Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram formed by the two deviation vectors.

\[
\text{Area} = \left\| \hat{v}_1 \wedge \hat{v}_2 \right\| = \frac{\left\| \hat{v}_1 - \hat{v}_2 \right\| \cdot \left\| \hat{v}_1 + \hat{v}_2 \right\|}{2}
\]

\[
\text{SALI} \cdot \frac{\max \left\{ \left\| \hat{v}_1 - \hat{v}_2 \right\|, \left\| \hat{v}_1 + \hat{v}_2 \right\| \right\}}{2} \Rightarrow \text{Area} \propto \text{SALI}
\]
Definition of GALI

In the case of an N degree of freedom Hamiltonian system or a $2N$ symplectic map we follow the evolution of

k deviation vectors with $2 \leq k \leq 2N$,

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D) the Generalized Alignment Index (GALI) of order k:

$$GALI_k(t) = \left\| \hat{v}_1(t) \wedge \hat{v}_2(t) \wedge \ldots \wedge \hat{v}_k(t) \right\|$$

where

$$\hat{v}_1(t) = \frac{v_1(t)}{\|v_1(t)\|}$$
Wedge product

We consider as a basis of the $2N$-dimensional tangent space of the system the usual set of orthonormal vectors:

$$\hat{e}_1 = (1,0,0,...,0), \hat{e}_2 = (0,1,0,...,0), ..., \hat{e}_{2N} = (0,0,0,...,1)$$

Then for k deviation vectors we have:

$$\begin{bmatrix}
\hat{v}_1 \\
\hat{v}_2 \\
\vdots \\
\hat{v}_k
\end{bmatrix} = \begin{bmatrix}
v_{11} & v_{12} & \cdots & v_{12N} \\
v_{21} & v_{22} & \cdots & v_{22N} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k1} & v_{k2} & \cdots & v_{k2N}
\end{bmatrix} \cdot \begin{bmatrix}
\hat{e}_1 \\
\hat{e}_2 \\
\vdots \\
\hat{e}_{2N}
\end{bmatrix}$$

$$\hat{v}_1 \wedge \hat{v}_2 \wedge \cdots \wedge \hat{v}_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq 2N} \begin{bmatrix}
v_{1i_1} & v_{1i_2} & \cdots & v_{1i_k} \\
v_{2i_1} & v_{2i_2} & \cdots & v_{2i_k} \\
\vdots & \vdots & \ddots & \vdots \\
v_{ki_1} & v_{ki_2} & \cdots & v_{ki_k}
\end{bmatrix} \cdot \hat{e}_{i_1} \wedge \hat{e}_{i_2} \wedge \cdots \wedge \hat{e}_{i_k}$$
Norm of wedge product

We define as ‘norm’ of the wedge product the quantity:

\[
\|\mathbf{\hat{v}}_1 \wedge \mathbf{\hat{v}}_2 \wedge \cdots \wedge \mathbf{\hat{v}}_k\| = \left\| \begin{vmatrix}
\mathbf{v}_{1i_1} & \mathbf{v}_{1i_2} & \cdots & \mathbf{v}_{1i_k} \\
\mathbf{v}_{2i_1} & \mathbf{v}_{2i_2} & \cdots & \mathbf{v}_{2i_k} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{ki_1} & \mathbf{v}_{ki_2} & \cdots & \mathbf{v}_{ki_k}
\end{vmatrix} \right\|^{1/2}
\]

where the sum is over all \(1 \leq i_1 < i_2 < \cdots < i_k \leq 2N\).
Computation of **GALI - Example**

Let us compute GALI_3 in the case of 2D Hamiltonian system (4-dimensional phase space).

\[
\begin{bmatrix}
\hat{v}_1 \\
\hat{v}_2 \\
\hat{v}_3
\end{bmatrix}
= \begin{bmatrix}
v_{11} & v_{12} & v_{13} & v_{14} \\
v_{21} & v_{22} & v_{23} & v_{24} \\
v_{31} & v_{32} & v_{33} & v_{34}
\end{bmatrix}
\cdot
\begin{bmatrix}
\hat{e}_1 \\
\hat{e}_2 \\
\hat{e}_3 \\
\hat{e}_4
\end{bmatrix}
\]

Columns

\[
\text{GALI}_3 = \left\| \hat{v}_1 \wedge \hat{v}_2 \wedge \hat{v}_3 \right\| = \left\{ \begin{array}{c}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23} \\
v_{31} & v_{32} & v_{33}
\end{array} \right\}^2 + \left\{ \begin{array}{c}
v_{11} & v_{12} & v_{14} \\
v_{21} & v_{22} & v_{24} \\
v_{31} & v_{32} & v_{34}
\end{array} \right\}^2 + \left\{ \begin{array}{c}
v_{13} & v_{14} \\
v_{23} & v_{24} \\
v_{33} & v_{34}
\end{array} \right\}^2 + \left\{ \begin{array}{c}
v_{12} & v_{13} & v_{14} \\
v_{22} & v_{23} & v_{24} \\
v_{32} & v_{33} & v_{34}
\end{array} \right\}^2 + \left\{ \begin{array}{c}
v_{13} & v_{14} \\
v_{23} & v_{24} \\
v_{33} & v_{34}
\end{array} \right\}^2 + \left\{ \begin{array}{c}
v_{12} & v_{13} & v_{14} \\
v_{22} & v_{23} & v_{24} \\
v_{32} & v_{33} & v_{34}
\end{array} \right\}^2
\]

\[
\frac{1}{2}
\]
Efficient computation of \textbf{GALI}

For \(k \) deviation vectors:

\[
\begin{bmatrix}
\hat{v}_1 \\
\hat{v}_2 \\
\vdots \\
\hat{v}_k
\end{bmatrix} =
\begin{bmatrix}
v_{11} & v_{12} & \cdots & v_{12N} \\
v_{21} & v_{22} & \cdots & v_{22N} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k1} & v_{k2} & \cdots & v_{k2N}
\end{bmatrix}
\cdot
\begin{bmatrix}
\hat{e}_1 \\
\hat{e}_2 \\
\vdots \\
\hat{e}_{2N}
\end{bmatrix} = A \cdot
\begin{bmatrix}
\hat{e}_1 \\
\hat{e}_2 \\
\vdots \\
\hat{e}_{2N}
\end{bmatrix}
\]

the ‘norm’ of the wedge product is given by:

\[
\left\| \hat{v}_1 \wedge \hat{v}_2 \wedge \cdots \wedge \hat{v}_k \right\| = \left\| \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq 2N} \begin{bmatrix}
v_{1i_1} & v_{1i_2} & \cdots & v_{1i_k} \\
v_{2i_1} & v_{2i_2} & \cdots & v_{2i_k} \\
\vdots & \vdots & \ddots & \vdots \\
v_{ki_1} & v_{ki_2} & \cdots & v_{ki_k}
\end{bmatrix}^2 \right\|^{1/2} = \sqrt{\det(A \cdot A^T)}
\]
Efficient computation of **GALI**

From **Singular Value Decomposition (SVD)** of A^T we get:

$$A^T = U \cdot W \cdot V^T$$

where U is a column-orthogonal $2N \times k$ matrix ($U^T \cdot U = I$), V^T is a $k \times k$ orthogonal matrix ($V \cdot V^T = I$), and W is a diagonal $k \times k$ matrix with positive or zero elements, the so-called **singular values**. So, we get:

$$\text{det}(A \cdot A^T) = \text{det}(V \cdot W^T \cdot U^T \cdot U \cdot W \cdot V^T) = \text{det}(V \cdot W \cdot I \cdot W \cdot V^T) =$$

$$\text{det}(V \cdot W^2 \cdot V^T) = \text{det}(V \cdot \text{diag}(w_1^2, w_2^2, \ldots w_k^2) \cdot V^T) = \prod_{i=1}^{k} w_i^2$$

Thus, GALI_k is computed by:

$$\text{GALI}_k = \sqrt{\text{det}(A \cdot A^T)} = \prod_{i=1}^{k} w_i \Rightarrow \log(\text{GALI}_k) = \sum_{i=1}^{k} \log(w_i)$$
Behavior of GALI_k for chaotic motion

GALI_k (2≤k≤2N) tends exponentially to zero with exponents that involve the values of the first k largest Lyapunov exponents σ₁, σ₂, …, σ_k:

\[
\text{GALI}_k(t) \propto e^{-[(σ_1 - σ_2) + (σ_1 - σ_3) + ... + (σ_1 - σ_k)]t}
\]

The above relation is valid even if some Lyapunov exponents are equal, or very close to each other.
Behavior of GALI_k for chaotic motion

Using the approximation:

$$v_i(t) = \sum_{j=1}^{2N} c_j^i e^{\sigma_j^i t} \hat{u}_j = c_1^i e^{\sigma_1^i t} \hat{u}_1 + c_2^i e^{\sigma_2^i t} \hat{u}_2 + \cdots + c_{2N}^i e^{\sigma_{2N}^i t} \hat{u}_{2N}, \quad \|v_i(t)\| \approx |c_1^i| e^{\sigma_1^i t}$$

where $\sigma_1 > \sigma_2 \geq \ldots \geq \sigma_n$ are the Lyapunov exponents, and \hat{u}_j, $j=1, 2, \ldots, 2N$ the corresponding eigendirections, we get

$$\begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \vdots \\ \hat{v}_k \end{bmatrix} = \begin{bmatrix} s_1 \begin{bmatrix} c_2 \\ c_1 \end{bmatrix} e^{-(\sigma_1 - \sigma_2) t} & c_3 \begin{bmatrix} c_1 \end{bmatrix} e^{-(\sigma_1 - \sigma_3) t} & \cdots & c_{2N} \begin{bmatrix} c_1 \end{bmatrix} e^{-(\sigma_1 - \sigma_{2N}) t} \\ \vdots \\ s_k \begin{bmatrix} c_2 \\ c_1 \end{bmatrix} e^{-(\sigma_1 - \sigma_2) t} & c_3 \begin{bmatrix} c_1 \end{bmatrix} e^{-(\sigma_1 - \sigma_3) t} & \cdots & c_{2N} \begin{bmatrix} c_1 \end{bmatrix} e^{-(\sigma_1 - \sigma_{2N}) t} \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \vdots \\ \hat{u}_{2N} \end{bmatrix}$$

with $s_i = \text{sign}(c_1^i)$.

Behavior of GALI_k for chaotic motion

From all determinants appearing in the definition of GALI_k the one that decreases the slowest is the one containing the first k columns of the previous matrix:

\[
\begin{pmatrix}
\frac{c_2}{c_1} e^{-(\sigma_1 - \sigma_2)t} & \frac{c_3}{c_1} e^{-(\sigma_1 - \sigma_3)t} & \cdots & \frac{c_k}{c_1} e^{-(\sigma_1 - \sigma_k)t} \\
\frac{c_2}{c_1} & \frac{c_3}{c_1} & \cdots & \frac{c_k}{c_1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{c_2}{c_1} e^{-(\sigma_1 - \sigma_2)t} & \frac{c_3}{c_1} e^{-(\sigma_1 - \sigma_3)t} & \cdots & \frac{c_k}{c_1} e^{-(\sigma_1 - \sigma_k)t}
\end{pmatrix}
\]

Thus

\[
\text{GALI}_k(t) \propto e^{-[(\sigma_1 - \sigma_2) + (\sigma_1 - \sigma_3) + \cdots + (\sigma_1 - \sigma_k)]t}
\]
Behavior of GALI_k for chaotic motion

2D Hamiltonian (Hénon-Heiles system)

\[\sigma_1 \approx 0.047 \]
Behavior of GALI_k for chaotic motion

3D system:

$$H_3 = \sum_{i=1}^{3} \frac{\omega_i}{2} (q_i^2 + p_i^2) + q_1^2q_2 + q_1^2q_3$$

with $\omega_1=1$, $\omega_2=\sqrt{2}$, $\omega_3=\sqrt{3}$, $H_3=0.09$.

![Graph showing Lyapunov exponents and log-log plot of GALI values over time.](image-url)
Behavior of GALI_k for chaotic motion

N particles Fermi-Pasta-Ulam (FPU) system:

$$H = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \sum_{i=0}^{N} \left[\frac{1}{2} (q_{i+1} - q_i)^2 + \frac{\beta}{4} (q_{i+1} - q_i)^4 \right]$$

with fixed boundary conditions, $N=8$ and $\beta=1.5$.

![Graphs showing the behavior of GALI for different lines](image)
Behavior of \(\text{GALI}_k \) for regular motion

If the motion occurs on an \(s \)-dimensional torus with \(s \leq N \) then the behavior of \(\text{GALI}_k \) is given by (Ch. S., Bountis, Antonopoulos, 2008, Eur. Phys. J. Sp. Top.):

\[
\text{GALI}_k(t) \propto \begin{cases}
\text{constant} & \text{if } 2 \leq k \leq s \\
\frac{1}{t^{k-s}} & \text{if } s < k \leq 2N - s \\
\frac{1}{t^{2(k-N)}} & \text{if } 2N - s < k \leq 2N
\end{cases}
\]

while in the common case with \(s=N \) we have:

\[
\text{GALI}_k(t) \propto \begin{cases}
\text{constant} & \text{if } 2 \leq k \leq N \\
\frac{1}{t^{2(k-N)}} & \text{if } N < k \leq 2N
\end{cases}
\]
Behavior of GALI_k for regular motion

3D Hamiltonian

![Graph showing the behavior of GALI for different slopes.](image)
Behavior of \(\text{GALI}_k \) for regular motion

N=8 FPU system: The unperturbed Hamiltonian (\(\beta=0 \)) is written as a sum of the so-called harmonic energies \(E_i \):

\[
E_i = \frac{1}{2} \left(P_i^2 + \omega_i^2 Q_i^2 \right), \quad i = 1, \ldots, N
\]

with:

\[
Q_i = \sqrt{\frac{2}{N+1}} \sum_{k=1}^{N} q_k \sin \left(\frac{k \pi i}{N+1} \right), \quad P_i = \sqrt{\frac{2}{N+1}} \sum_{k=1}^{N} p_k \sin \left(\frac{k \pi i}{N+1} \right), \quad \omega_i = 2 \sin \left(\frac{i \pi}{2(N+1)} \right)
\]
Global dynamics

- \(\text{GALI}_2 \) (practically equivalent to the use of SALI)
- \(\text{GALI}_N \)
 - Chaotic motion: \(\text{GALI}_N \rightarrow 0 \) (exponential decay)
 - Regular motion: \(\text{GALI}_N \rightarrow \text{constant} \neq 0 \)

3D Hamiltonian
Subspace \(q_3 = p_3 = 0, \ p_2 \geq 0 \) for \(t=1000 \).
Global dynamics

GALI_k with $k>N$

The index tends to zero both for regular and chaotic orbits but with completely different time rates:

- Chaotic motion: exponential decay
- Regular motion: power law

2D Hamiltonian (Hénon-Heiles)

Time needed for $\text{GALI}_4<10^{-12}$
Behavior of GALI_k

Chaotic motion:

$\text{GALI}_k \rightarrow 0$ exponential decay

$$\text{GALI}_k (t) \propto e^{-[(\sigma_1 - \sigma_2) + (\sigma_1 - \sigma_3) + \ldots + (\sigma_1 - \sigma_k)]t}$$

Regular motion:

$\text{GALI}_k \rightarrow \text{constant} \neq 0$ or $\text{GALI}_k \rightarrow 0$ power law decay

$$\text{GALI}_k (t) \propto \begin{cases}
\text{constant} & \text{if } 2 \leq k \leq s \\
\frac{1}{t^{k-s}} & \text{if } s < k \leq 2N - s \\
\frac{1}{t^{2(k-N)}} & \text{if } 2N - s < k \leq 2N
\end{cases}$$
Regular motion on low-dimensional tori

A regular orbit lying on a 2-dimensional torus for the N=8 FPU system.
Regular motion on low-dimensional tori

A regular orbit lying on a 4-dimensional torus for the N=8 FPU system.
Low-dimensional tori - 6D map

\[\begin{align*}
x_1' &= x_1 + x_2' \\
x_2' &= x_2 + \frac{K_1}{2\pi} \sin(2\pi x_1) - \frac{B}{2\pi} \left\{ \sin[2\pi(x_5 - x_1)] + \sin[2\pi(x_3 - x_1)] \right\} \\
x_3' &= x_3 + x_4' \\
x_4' &= x_4 + \frac{K_2}{2\pi} \sin(2\pi x_3) - \frac{B}{2\pi} \left\{ \sin[2\pi(x_1 - x_3)] + \sin[2\pi(x_3 - x_3)] \right\} \pmod{1} \\
x_5' &= x_5 + x_6' \\
x_6' &= x_6 + \frac{K_3}{2\pi} \sin(2\pi x_5) - \frac{B}{2\pi} \left\{ \sin[2\pi(x_3 - x_5)] + \sin[2\pi(x_1 - x_5)] \right\}
\end{align*} \]

3D torus

2D torus
Locating low-dimensional tori

Orbits with $q_1=q_2=0.1$, $p_1=p_2=p_3=0$, $H=0.010075$ for the $N=4$ FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).

g_k = \frac{\text{GALI}_k}{\max(\text{GALI}_k)}
Locating low-dimensional tori

Orbits with $q_1=q_2=0.1$, $p_1=p_2=p_3=0$, $H=0.010075$ for the $N=4$ FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).

$g_k = \frac{\text{GALI}_k}{\text{max}(\text{GALI}_k)}$
Locating low-dimensional tori

Orbits with $q_1=q_2=0.1$, $p_1=p_2=p_3=0$, $H=0.010075$ for the $N=4$ FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).

$g_k = \frac{GALI_k}{\max(GALI_k)}$
Locating low-dimensional tori

Orbits with $q_1=q_2=0.1$, $p_1=p_2=p_3=0$, $H=0.010075$ for the $N=4$ FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).

$$g_k = \frac{\text{GALI}_k}{\max(\text{GALI}_k)}$$
Barred galaxies

NGC 1433

NGC 2217
Barred galaxy model

The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The Hamiltonian that describes the motion for this model is:

\[H = \frac{1}{2} (p_x^2 + p_y^2 + p_z^2) + V(x, y, z) - \Omega_b (x p_y - y p_x) \equiv \text{Energy} \]

This model consists of the superposition of potentials describing an axisymmetric part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

a) Axisymmetric component:

i) Plummer sphere:

\[V_{\text{sphere}}(x, y, z) = -\frac{GM_s}{\sqrt{x^2 + y^2 + z^2 + \epsilon_s^2}} \]

ii) Miyamoto–Nagai disc:

\[V_{\text{disc}}(x, y, z) = -\frac{GM_D}{\sqrt{x^2 + y^2 + (A + \sqrt{B^2 + z^2})^2}} \]

b) Bar component:

\[V_{\text{bar}}(x, y, z) = -\pi Gabc \frac{\rho_c}{n+1} \int_{\Delta u}^{\infty} du (1 - m^2(u))^{n+1}, \]

(Ferrers bar)

\[\rho_c = \frac{105}{32\pi} \frac{GM_B}{abc} \]

Its density is:

\[\rho = \begin{cases} \rho_c (1 - m^2)^n, & \text{for } m \leq 1 \\ 0, & \text{for } m > 1 \end{cases}, \] where \(m^2(u) = \frac{x^2}{a^2 + u} + \frac{y^2}{b^2 + u} + \frac{z^2}{c^2 + u}, \) \(\Delta^2(u) = (a^2 + u)(b^2 + u)(c^2 + u), \) \(n: \text{positive integer } (n = 2 \text{ for our model}), \) \(\lambda: \text{the unique positive solution of } m^2(\lambda) = 1 \), \(a > b > c \) and \(n = 2. \)
Time-dependent barred galaxy model

The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The Hamiltonian that describes the motion for this model is:

$$ H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + V(x, y, z, t) - \Omega_b(xp_y - yp_x) \equiv \text{Energy} $$

This model consists of the superposition of potentials describing an axisymmetric part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

a) Axisymmetric component:

i) Plummer sphere:

$$ V_{\text{sphere}}(x, y, z) = -\frac{GM_s}{\sqrt{x^2 + y^2 + z^2 + \epsilon_s^2}} $$

b) Bar component:

(Ferrers bar)

$$ V_{\text{bar}}(x, y, z) = -\pi Gabc \frac{\rho_c}{n+1} \int_{\Delta(u)}^{\infty} du (1 - m^2(u))^{n+1} $$

where

$$ m^2(u) = \frac{x^2}{a^2 + u} + \frac{y^2}{b^2 + u} + \frac{z^2}{c^2 + u}, \quad \Delta^2(u) = (a^2 + u)(b^2 + u)(c^2 + u), $$

$$ n: \text{positive integer (} n = 2 \text{ for our model)}, \quad \lambda: \text{the unique positive solution of } m^2(\lambda) = 1 $$

Its density is:

$$ \rho = \begin{cases}
\rho_c (1 - m^2)^n, & \text{for } m \leq 1 \\
0, & \text{for } m > 1
\end{cases} $$

where

$$ m^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}, \quad a > b > c \text{ and } n = 2. $$
Time-dependent 2D barred galaxy model
Time-dependent 3D barred galaxy model

Interplay between chaotic and regular motion
Numerical Integration of Equations of Motion and Variational Equations
Efficient integration of variational equations

Consider an \(N \) degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form:

\[
H(\mathbf{q}, \mathbf{p}) = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + V(\mathbf{q})
\]

with \(\mathbf{q} = (q_1(t), q_2(t), \ldots, q_N(t)) \) \(\mathbf{p} = (p_1(t), p_2(t), \ldots, p_N(t)) \) being respectively the coordinates and momenta.

The time evolution of an orbit is governed by the Hamilton’s equations of motion

\[
\dot{\mathbf{q}} = \mathbf{p} \\
\dot{\mathbf{p}} = -\frac{\partial V}{\partial \mathbf{q}}
\]
Variational Equations

The time evolution of a deviation vector

$$\vec{w}(t) = (\delta q_1(t), \delta q_2(t), \ldots, \delta q_N(t), \delta p_1(t), \delta p_2(t), \ldots, \delta p_N(t))$$

from a given orbit is governed by the variational equations:

$$\begin{align*}
\dot{\delta q} &= \delta p \\
\dot{\delta p} &= -D^2V(\vec{q}(t))\delta q
\end{align*}$$

where

$$D^2V(\vec{q}(t))_{jk} = \left. \frac{\partial^2 V(\vec{q})}{\partial q_j \partial q_k} \right|_{\vec{q}(t)}, \quad j, k = 1, 2, \ldots, N.$$
Autonomous Hamiltonian systems

As an example, we consider the Hénon-Heiles system:

\[H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2 y - \frac{1}{3}y^3 \]

Hamilton’s equations of motion:
\[
\begin{align*}
\dot{x} &= p_x \\
\dot{y} &= p_y \\
\dot{p}_x &= -x - 2xy \\
\dot{p}_y &= y^2 - x^2 - y
\end{align*}
\]

Variational equations:
\[
\begin{align*}
\delta \dot{x} &= \delta p_x \\
\delta \dot{y} &= \delta p_y \\
\delta \dot{p}_x &= -(1 + 2y)\delta x - 2x\delta y \\
\delta \dot{p}_y &= -2x\delta x + (-1 + 2y)\delta y
\end{align*}
\]
Integration of the variational equations

We use two general-purpose numerical integration algorithms for the integration of the whole set of equations:

\[
\begin{align*}
\dot{x} &= p_x \\
\dot{y} &= p_y \\
\dot{p}_x &= -x - 2xy \\
\dot{p}_y &= y^2 - x^2 - y \\
\delta x &= \delta p_x \\
\delta y &= \delta p_y \\
\delta p_x &= -(1 + 2y)\delta x - 2x\delta y \\
\delta p_y &= -2x\delta x + (-1 + 2y)\delta y
\end{align*}
\]

a) the DOP853 integrator (Hairer et al. 1993, http://www.unige.ch/~hairer/software.html), which is an explicit non-symplectic Runge-Kutta integration scheme of order 8,

b) the TIDES integrator (Barrio 2005, http://gme.unizar.es/software/tides), which is based on a Taylor series approximation

\[
y(t_i + \tau) \simeq y(t_i) + \tau \frac{dy(t_i)}{dt} + \frac{\tau^2}{2!} \frac{d^2y(t_i)}{dt^2} + \ldots + \frac{\tau^n}{n!} \frac{d^ny(t_i)}{dt^n}
\]

for the solution of system

\[
\frac{dy(t)}{dt} = f(y(t))
\]
Symplectic Integration schemes

Formally the solution of the Hamilton’s equations of motion can be written as:

\[
\frac{d\tilde{X}}{dt} = \{H, \tilde{X}\} = L_H \tilde{X} \Rightarrow \tilde{X}(t) = \sum_{n \geq 0} \frac{t^n}{n!} L^n_H \tilde{X} = e^{tL_H} \tilde{X}
\]

where \(\tilde{X}\) is the full coordinate vector and \(L_H\) the Poisson operator:

\[
L_H f = \sum_{j=1}^{N} \left\{ \frac{\partial H}{\partial p_j} \frac{\partial f}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial f}{\partial p_j} \right\}
\]

If the Hamiltonian \(H\) can be split into two integrable parts as \(H = A + B\), a symplectic scheme for integrating the equations of motion from time \(t\) to time \(t+\tau\) consists of approximating the operator \(e^{\tau L_H}\) by

\[
e^{\tau L_H} = e^{\tau (L_A + L_B)} \approx \prod_{i=1}^{j} e^{c_i \tau L_A} e^{d_i \tau L_B}
\]

for appropriate values of constants \(c_i, d_i\).

So the dynamics over an integration time step \(\tau\) is described by a series of successive acts of Hamiltonians \(A\) and \(B\).
We use a symplectic integration scheme developed for Hamiltonians of the form \(H = A + \varepsilon B \) where \(A, B \) are both integrable and \(\varepsilon \) a parameter. The operator \(e^{\tau L_H} \) can be approximated by the symplectic integrator (Laskar & Robutel, 2001, Cel. Mech. Dyn. Astr.):

\[
SABA_{2} = e^{c_1 \tau L_A} e^{d_1 \tau L_{\varepsilon B}} e^{c_2 \tau L_A} e^{d_1 \tau L_{\varepsilon B}} e^{c_1 \tau L_A}
\]

with \(c_1 = \frac{(3 - \sqrt{3})}{6} \), \(c_2 = \frac{\sqrt{3}}{3} \), \(d_1 = \frac{1}{2} \).

The integrator has only positive steps and its error is of order \(O(\tau^4 \varepsilon + \tau^2 \varepsilon^2) \).

In the case where \(A \) is quadratic in the momenta and \(B \) depends only on the positions the method can be improved by introducing a corrector \(C = \{\{A,B\},B\} \), having a small negative step:

\[
-\tau^3 \varepsilon^2 \frac{c}{2} L^{\{\{A,B\},B\}} e
\]

with \(c = \frac{(2 - \sqrt{3})}{24} \).

Thus the full integrator scheme becomes: \(SABAC_2 = C (SABA_2) C \) and its error is of order \(O(\tau^4 \varepsilon + \tau^4 \varepsilon^2) \).
Tangent Map (TM) Method

Use symplectic integration schemes for the whole set of equations (Ch.S., Gerlach, 2010, PRE)

We apply the SABAC\(_2\) integrator scheme to the Hénon-Heiles system (with \(\varepsilon=1\)) by using the splitting:

\[
A = \frac{1}{2}(p_x^2 + p_y^2), \quad B = \frac{1}{2}(x^2 + y^2) + x^2 y - \frac{1}{3}y^3,
\]

with a corrector term which corresponds to the Hamiltonian function:

\[
C = \{\{A, B\}, B\} = (x + 2xy)^2 + (x^2 - y^2 + y)^2
\]

We approximate the dynamics by the act of Hamiltonians A, B and C, which correspond to the symplectic maps:

\[
\begin{align*}
 e^{\tau L_A} : \quad &\left\{ \begin{array}{l}
 x' = x + p_x \tau \\
 y' = y + p_y \tau \\
 p_x' = p_x \\
 p_y' = p_y
 \end{array} \right. \\
 e^{\tau L_B} : \quad &\left\{ \begin{array}{l}
 x' = x \\
 y' = y \\
 p_x' = p_x - x(1 + 2y)\tau \\
 p_y' = p_y + (y^2 - x^2 - y)\tau
 \end{array} \right. \\
 e^{\tau L_C} : \quad &\left\{ \begin{array}{l}
 x' = x \\
 y' = y \\
 p_x' = p_x - 2x(1 + 2x^2 + 6y + 2y^2)\tau \\
 p_y' = p_y - 2(3y^2 + 2y^3 + 3x^2 + 2x^2 y)\tau
 \end{array} \right.
\]

Tangent Map (TM) Method

Let \(\vec{u} = (x, y, p_x, p_y, \delta x, \delta y, \delta p_x, \delta p_y) \)

The system of the Hamilton’s equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

\[
\begin{align*}
\dot{x} &= p_x \\
\dot{y} &= p_y \\
\dot{p}_x &= -x - 2xy \\
\dot{p}_y &= y^2 - x^2 - y
\end{align*}
\]

\(A(\vec{p}) \)

\[
\begin{align*}
\delta x &= \delta p_x \\
\delta y &= \delta p_y \\
\delta p_x &= -(1 + 2y)\delta x - 2x\delta y \\
\delta p_y &= -2x\delta x + (-1 + 2y)\delta y
\end{align*}
\]

\[
\Rightarrow \frac{d\vec{u}}{dt} = L_{AV}\vec{u} \Rightarrow e^{\tau L_{AV}}:
\]

\[
\begin{align*}
x' &= x + p_x\tau \\
y' &= y + p_y\tau \\
p_x' &= p_x \\
p_y' &= p_y \\
\delta x' &= \delta x + \delta p_x\tau \\
\delta y' &= \delta y + \delta p_y\tau \\
\delta p_x' &= \delta p_x \\
\delta p_y' &= \delta p_y
\end{align*}
\]

\[
B(\vec{q})
\]

\[
\begin{align*}
\dot{x} &= 0 \\
\dot{y} &= 0 \\
\dot{p}_x &= -x - 2xy \\
\dot{p}_y &= y^2 - x^2 - y \\
\delta x &= 0 \\
\delta y &= 0 \\
\delta p_x &= -(1 + 2y)\delta x - 2x\delta y \\
\delta p_y &= -2x\delta x + (-1 + 2y)\delta y
\end{align*}
\]

\[
\Rightarrow \frac{d\vec{u}}{dt} = L_{BV}\vec{u} \Rightarrow e^{\tau L_{BV}}:
\]

\[
\begin{align*}
x' &= x \\
y' &= y \\
p_x' &= p_x - x(1 + 2y)\tau \\
p_y' &= p_y + (y^2 - x^2 - y)\tau \\
\delta x' &= \delta x \\
\delta y' &= \delta y \\
\delta p_x' &= \delta p_x - [(1 + 2y)\delta x + 2x\delta y]\tau \\
\delta p_y' &= \delta p_y + [-2x\delta x + (-1 + 2y)\delta y]\tau
\end{align*}
\]
Tangent Map (TM) Method

So any symplectic integration scheme used for solving the Hamilton’s equations of motion, which involves the action of Hamiltonians A, B and C, can be extended in order to integrate simultaneously the variational equations.

\[
\begin{align*}
\exp^{\tau L_A} : & \quad \begin{cases}
x' = x + p_x \tau \\
y' = y + p_y \tau \\
p_{x}' = p_x \\
p_{y}' = p_y \\
\delta x' = \delta x + \delta p_x \tau \\
\delta y' = \delta y + \delta p_y \tau \\
\delta p_{x}' = \delta p_x \\
\delta p_{y}' = \delta p_y
\end{cases} \\
\exp^{\tau L_B} : & \quad \begin{cases}
x' = x \\
y' = y \\
p_{x}' = p_x - x(1 + 2y) \tau \\
p_{y}' = p_y + (y^2 - x^2 - y) \tau \\
\delta x' = \delta x \\
\delta y' = \delta y \\
\delta p_{x}' = \delta p_x - [(1 + 2y) \delta x + 2x \delta y] \tau \\
\delta p_{y}' = \delta p_y + [-2x \delta x + (-1 + 2y) \delta y] \tau
\end{cases} \\
\exp^{\tau L_C} : & \quad \begin{cases}
x' = x \\
y' = y \\
p_{x}' = p_x - 2x(1 + 2x^2 + 6y + 2y^2) \tau \\
p_{y}' = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2 y) \tau \\
\delta x' = \delta x \\
\delta y' = \delta y \\
\delta p_{x}' = \delta p_x - 2 \left[(1 + 6x^2 + 2y^2 + 6y) \delta x + 2x(3 + 2y) \delta y \right] \tau \\
\delta p_{y}' = \delta p_y - 2 \left[2x(3 + 2y) \delta x + (1 + 2x^2 + 6y^2 - 6y) \delta y \right] \tau
\end{cases}
\end{align*}
\]
Application: FPU system

N particles Fermi-Pasta-Ulam (FPU) system:

\[H = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \sum_{i=0}^{N} \left[\frac{1}{2} (q_{i+1} - q_i)^2 + \frac{\beta}{4} (q_{i+1} - q_i)^4 \right] \]

with fixed boundary conditions, \(\beta = 1.5 \) and \(N = 4 - 20 \).

\(N = 4 \). Regular motion on 2d torus. Final time \(t = 10^6 \).

CPU times ≈

\begin{align*}
\text{TM, } \tau = 0.5 & \quad 9 \text{ s} \\
\text{DOP853, } \delta = 10^{-5} & \quad 54 \text{ s} \\
\text{DOP853, } \delta = 10^{-10} & \quad 1 \text{m 37s} \\
\text{TIDES, } \delta = 10^{-5} & \quad \text{1m 37s} \\
\text{TIDES, } \delta = 10^{-10} & \quad \text{1m 37s}
\end{align*}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Comparison of GALIs for different methods and tolerances.}
\end{figure}
Application: FPU system

N=12. Regular motion on 6d torus. Final time *t*=10^8.

CPU times ≈

<table>
<thead>
<tr>
<th></th>
<th>8 h</th>
<th>22.5 h</th>
<th>38 h</th>
</tr>
</thead>
</table>

![Graphs showing log10 |ΔH| vs log10 t for different methods and error tolerances.](image)
Conclusions I

• The Smaller ALignment Index (SALI) method a fast, efficient and easy to compute chaos indicator.

• Behaviour of the SALI:
 ✓ 2D maps: it tends to zero following completely different time rates for regular and chaotic orbits, which allows the distinction between the two cases.
 ✓ Hamiltonian flows and in multidimensional maps: it goes to zero for chaotic orbits, while it tends to a positive value for ordered orbits.
Conclusions II

• Generalizing the SALI method we define the Generalized ALignment Index of order k (GALI\textsubscript{k}) as the volume of the parallelepiped, whose edges are k unit deviation vectors. GALI\textsubscript{k} is computed as the product of the singular values of a matrix (SVD algorithm).

• Behaviour of GALI\textsubscript{k}:

 ✓ Chaotic motion: it tends exponentially to zero with exponents that involve the values of several Lyapunov exponents.

 ✓ Regular motion: it fluctuates around non-zero values for 2\leq k \leq s and goes to zero for s < k \leq 2N following power-laws, with s being the dimensionality of the torus.
Conclusions III

• \(\text{GALI}_k \) indices:
 ✓ can distinguish rapidly and with certainty between regular and chaotic motion
 ✓ can be used to characterize individual orbits as well as "chart" chaotic and regular domains in phase space
 ✓ are perfectly suited for studying the global dynamics of multidimensional systems, as well as of time-dependent models
 ✓ can identify regular motion on low-dimensional tori

• \(\text{SALI/GALI} \) methods have been successfully applied to a variety of conservative dynamical systems of
 ✓ Nuclear Physics (e.g. Macek et al., 2007, Phys. Rev. C - Stránský et al., 2007, Phys. Atom. Nucl. - Stránský et al., 2009, Phys. Rev. E - Antonopoulos et al., 2010, PRE)
Conclusions IV

• Tangent map (TM) method: Symplectic integrators can be used for the efficient integration of the Hamilton’s equations of motion and the variational equations.

 ✓ They reproduce accurately the properties of chaos indicators like the GALIs.

 ✓ These algorithms have better performance than non-symplectic schemes in CPU time requirements. This characteristic is of great importance especially for multidimensional systems.
Main References I

- **Hamiltonian systems and symplectic maps**

- **Lyapunov exponents**
 - Oseledec V I (1968) Trans. Moscow Math. Soc. 19 197
Main References II

- **SALI**

- **GALI**
Main References III

• Reviews on SALI and GALI

• TM method